
T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

at 3/2013

Tools ���

ImageNets – Framework
for Fast Development
of Robust and High Performance
Image Processing Algorithms
ImageNets – Rahmenwerk zur schnellen Entwicklung von robusten
Hochleistungs-Bildverarbeitungs-Algorithmen

Uwe Lange∗, Henning Kampe, Axel Gräser, University of Bremen

∗ Correspondence author: ulange@iat.uni-bremen.de

Summary In this publication, we describe the novel Ima-
geNets framework which enables developers with low pro-
gramming knowledge to rapidly create efficient high perform-
ance image processing algorithms and which is available under
an open source license1. The performance of this novel tool
has been compared with the simple to use Image Process-
ing Toolbox of MATLAB/Simulink. A group of 49 students,
attendees of a robot vision lecture, had to solve an image
processing task using both tools. Different evaluation crite-
ria have been measured or determined by interrogation of
the students. The advantage of the new tool ImageNets
has become clearly visible. ��� Zusammenfassung In
diesem Artikel stellen wir das neue Rahmenwerk ImageNets

vor, das bei geringen Programmierkenntnissen die schnelle
Entwicklung leistungsfähiger, effizienter Bildverarbeitungsal-
gorithmen ermöglicht und unter einer Open Source Lizenz
frei verfügbar ist1. Die Leistungsfähigkeit des neuen Tools
wurde in einen Vergleichstest zwischen ImageNets und der
vergleichbar leicht zu nutzenden Image Processing Toolbox
von MATLAB/Simulink ermittelt. Eine Gruppe von 49 Studen-
ten, Teilnehmer einer Vorlesung über Bildverarbeitung in der
Robotik, hatten dazu eine Bildverarbeitungsaufgabe mit beiden
Tools zu lösen. Die verschiedenen Beurteilungskriterien wur-
den gemessen oder durch Abfrage der Studenten ermittelt. Der
Vorteil des neuen Tools ImageNets kann so klar nachgewiesen
werden.

Keywords Image Processing, robotics, framework ��� Schlagwörter Bildverarbeitung, Robotik, Rahmenwerk

1 Introduction
The development of intelligent behavior for assistive
robots, which operate in partially unknown environment
and especially under varying illumination conditions,
is a complex and time-consuming task. Especially the

1 http://imagenets.sourceforge.net

robot vision system has to robustly perceive the envi-
ronment for collision-free robot motion and successful
object recognition and grasping.

During the development of the FRIEND [1] as-
sistive robot, several shortcomings in the design of
image processing algorithms have been experienced. The
FRIEND system, which supports disabled people like

at – Automatisierungstechnik 61 (2013) 3 / DOI 10.1524/auto.2013.0019 © Oldenbourg Wissenschaftsverlag 203

mailto:ulange@iat.uni-bremen.de
http://imagenets.sourceforge.net


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Tools

Figure 1 The user levels for the ImageNet framework.

quadriplegics2 in professional and everyday life, consists
of a wheel chair with an attached robot arm and several
cameras and other sensors.

The development of the necessary image processing
skills for new robot tasks proved to be one of the most
challenging and time consuming tasks in service robot de-
velopment. With the development of the tool ImageNets
the shortcomings of available standard and advanced
image processing tools are overcome. ImageNets consists
of two user-levels:
• a configurator level at which new image processing al-

gorithms are configured and parameterized with help
of existing, well implemented, documented and opti-
mized basic algorithms.

• a programmer level that allows the implementation
of new algorithms that extend the number of config-
urable basic algorithms.

The two user-levels are depicted in Fig. 1. The main user
is the Configurator. He only needs knowledge about the
algorithm he intends to create and uses the ImageNet
Designer together with the existing function blocks. This
is explained in Sect. 3.1. If new functionality has to be
added, a Programmer has to create new function blocks or
change existing ones as shown in Sect. 3.7. Both, Config-
urator and Programmer interact with the base framework
of ImageNets.

ImageNets has the following advantages:
Adv. 1 To be used with basic image processing know-

ledge: ImageNets provides a tool that allows
people with standard image processing knowledge
to configure even challenging image processing
tasks. This is achieved by utilizing the concept
of configuration and parameterization on image
processing level.

Adv. 2 Generation of executable software: ImageNets
generates executable software without the need
for compilation and with a low overhead and
a short execution time.

Adv. 3 Easy debugging of algorithms: ImageNets offers
the possibility to view the results of algorithms
and parameter changes immediately (images can
be used by the developers to judge the results).

2 A quadriplegic is a human whose arms and legs are paralyzed.

Adv. 4 3D visualization: ImageNets embeds an integrated
3D simulation environment tailored for robotics.

The outline of the paper consists of the following: Sect. 2
describes state of art and discusses to what extent compa-
rable frameworks fulfill the above mentioned advantages.
In Sect. 3 ImageNets is described in detail while the ful-
fillment of the advantages by ImageNets is evaluated in
Sect. 4. Finally, Sect. 5 demonstrates the outcome and
future work.

2 State of the Art
Since high execution performance is desired in robotics,
a language with compiled code like C++ is common.
The open source computer vision library OpenCV [3]
provides C++ with access to much basic functionality
and is therefore often used. Still it is quite challenging
to program complex image processing algorithms with
OpenCV and to transfer knowledge between developers.
Complexity of solutions can be reduced and productivity
increased by using a graphical tool [4]. One kind of tool
which is commonly used is function block programming
which is based on the human capability to easily com-
prehend graphical elements. It enables the programmer
to directly use and parameterize pre-compiled functional
blocks to model an algorithm. A number of graphical
programming tools are available today, each tailored for
a specific industry. Also industry considers graphical pro-
gramming as a safe way of programming for safety related
issues [5].

Another quick way to develop image processing
algorithms is by using an interpreted programming lan-
guage where the parameters can be modified without
the need for time consuming compilation. However,
interpreted languages decrease the performance of soft-
ware compared to compiled programming languages
like C/C++ considerably. Therefore, the combination of
rapid prototyping by a graphical programmers interface
and real time execution is desirable. The widely used
MATLAB®&Simulink® [6] “Image Processing Blockset”

Table 1 Comparison of computer vision frameworks.

M
A

T
LA

B

La
bV

IE
W

M
eV

is
La

b

G
ra

ph
E

di
t

H
al

co
n

O
pe

n
C

V

Im
ag

eN
et

s

D
ev

el
op

-
m

en
t

Function Block Programming × × × × ×
Function Block Sub-Routines × × × ×

3D Data Visualisation × × × × ×

E
xe

cu
-

ti
on

High Execution Perfomance × × × × ×
Feedback Structures × × ×

C++ Code Connectivity × × × × × × ×

G
en

-
er

al

Platform Independent × × × × ×
Open Source × ×

204



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

ImageNets – Framework for Fast Development ... ���

and LabVIEW [7] environments provide the possibility
for rapid prototyping of image processing algorithms.
But a major drawback is the dependency on inter-
preted language. The medical image processing toolbox
MeVisLab® [8] combines the advantages of graphical
programming and also includes a 3D-environment for
displaying reconstructed medical images. Due to its ma-
jor focus on medical image processing, this toolbox is not
suited well for robotics. GraphEdit® [9] and Halcon® [10]
are mainly tailored for machine vision and image analysis
applications but not for robot control. The various fea-
tures of a representative set of existing image processing
toolboxes are documented in Table 1.

None of the investigated tools met all of the targeted
advantages in the important areas for robot control.

3 ImageNets
As none of the presented software tools fulfills the
targeted advantages from Sect. 1, a novel open source
framework for robust robot vision has been developed.
The framework consists of three main components,
namely:
• ImageNet Designer, a graphical user interface.
• ImageNets core library, providing the base framework

including an event flow mechanism.
• A set of plug-ins3, containing function blocks.
Each component is explained in the following subsec-
tions.

3.1 ImageNet Designer
The ImageNet Designer is a graphical user interface, en-
abling developers to create an ImageNet and store it in
XML format. It has been implemented to support the
developers of robot vision algorithms while focusing on
the first advantage: “supporting fast development”. The
general and widely approved/accepted method [5–9] of
creating function block networks builds the basis for Im-
ageNet Designer.

As depicted in Fig. 1, the ImageNet Designer is used
to model complex image processing algorithms. An al-
gorithm consists of a set of function blocks which have
input and output ports. Through these ports an event and
data flow takes place by linking an output into an input.
The core library of the ImageNet framework handles the
execution based on the used blocks and their linkage
as explained in detail in the next sections. It also loads
the plug-ins with the available function blocks. In the
designer multiple ways to find a desired function block
exist, which consume a small amount of time. All blocks
can be created from menus, sorted by name, category, in-
put or output port data type. The transfer of knowledge
of how to use a block is achieved by demos, accessible in
the ImageNet Designer.

3 A plug-in is a dynamically loadable software library to add specific
abilities to a software application.

Possible configuration errors introduced by the user
are prevented by limiting the allowed values for each
parameter of a block. If for example a threshold is only
valid in the range of [0–255], then the user cannot set
other values. Furthermore, ports ensure valid linking by
using defined data types. Most data types are based on
OpenCV [3], which is a high performance image pro-
cessing library based on C++, to support Adv. 2. These
data types are visualized in the ImageNet Designer by
meaningful icons.

The visualization of intermediate results is very useful
for intuitive debugging. In conventional programming,
output of intermediate results have to be hardcoded e. g.
as console outputs or pop-up windows.

While designing an ImageNet with the Designer, inter-
mediate results can be visualized either two dimensional
e. g. with an image or as three dimensional entities such
as point clouds and bodies. This direct visual feedback
to the user eases algorithm development (Adv. 1). Some
data types like scalar values over time can only be visual-
ized in 2D, whereas images with camera matrices can be
visualized in 2D and 3D (using OpenGL4). In addition,
the Designer is able to visualize point clouds, calculated
by stereo vision or directly captured by Time-of-Flight
(ToF) cameras.

While the 2D visualization is a part of every vision
library, a 3D visualization is not found in the existing
image processing toolboxes. That extension of ImageNets
fits to the needs of robotics. This capability requires the
combination of the robot model, camera images and
point clouds, which is possible with ImageNet Designer
(Adv. 3, 4).

Documentation is included in every ImageNet block,
and available for every of its ports and properties. More-
over every block has a link to its own page in the
ImageNets Wiki where a detailed description of the algo-
rithm and the implementation is stored. All blocks can
easily be used as components-of-the-shelf (Adv. 1).

Further developing aids include warnings for missing
input links on net execution and an event logger. The
event logger gathers messages from the blocks during
processing sorted by time and log level (e. g. error or
warning). This textual data can also be visualized as a di-
agram. Corresponding blocks are directly accessible from
the log entries, thus testing is simplified (Adv. 1).

For debugging purpose, visualization blocks (e. g. draw
2D points on an image) can be marked for “execution
only in the Designer” mode. Visualization is automati-
cally deactivated for blocks that are used inside a sub-net.
This functionality supports both fast development and
high execution performance (Adv. 1, 2).

ImageNet Designer provides short help documenta-
tion for explanation for ImageNet beginners and also
links to a growing number of tutorials for self-learning
purposes.

4 http://www.opengl.org/

205

http://www.opengl.org/


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Tools

3.2 ImageNets Logic
ImageNets uses a modified version of the function block
network concept from IEC 61131-3 using a combined
data and event flow. The general concept of function
block networks is not new but applied in several programs
like PLC programming. Function blocks can be handled
as reusable black boxes with images as inputs, outputs and
parameters while the actual processing code is hidden.
Thus, irrelevant details are hidden from the developer
and the overview about the whole algorithm is easily
maintained. An algorithm is built by placing a set of
blocks inside a net and by linking outputs into inputs.
Each input must have exactly one ingoing link. Outputs
can be linked to any amount of inputs. The structure of
this net also defines the execution order of the blocks.
How this is handled by the framework is explained later
in this section. Blocks may be configured with parameters
to define execution details like a threshold.

The fundamental entity of ImageNets is referred as
block b. It has a unique name, identification number
(ID), a finite number of input/output ports and a set of
parameters as described below.

Block b := (Name, ID, PIn, POut, P)

ID = (1...m)

Name = (Category + Block Name)

Input ports PIn := {pin,i|i= 0...q}
Output ports POut := {pout,i|i= 0...r}
Parameter P := {pi|i= 0...s}

The set of all available blocks is denoted as B∗. All blocks
in B∗ have a unique name.

Figure 2 Relations between the ImageNets block sets.

Figure 3 ImageNet which calculates a point cloud from stereo images.

Set of all blocks B∗ := {bi|i= 0...k}

Consider an ImageNet N with a set of blocks B. Two
identical copies of a block from B∗ used in the same net N
are distinguished using their unique ID. Let δ represent
the connection function between the blocks using the
IDs. All established connections in the net are stored in
the set δ∗. The set of blocks to be processed is described
by BP and BA represents the set of currently active blocks.
The framework supports feedback structures which may
be applied in the designer to any existing block. BF is the
set of blocks for which special feedback rules take place
during execution as explained in Sect. 3.4. The formal
definition of the ImageNet and its components can be
found below.

ImageNet N := (B, δ∗, BP, BA, BF)
Blocks B := {bi|bi ∈ B∗, i= 0...m}
Connection function δ := (IDStart,POutStart,IDEnd,PInEnd)

IDStart= Start block ID

POutStart= Start block out port

IDEnd=End block ID

PInEnd=End block in port

Set of all connections δ∗ := {δi|i= 0...l}
BP ⊆ B :=Blocks to be processed

BA ⊆ BP :=Active blocks

BF ⊆ B := Feedback/optimization blocks

The relation between the block sets is visualized in Fig. 2.
Figure 3 shows an ImageNet for the calculation of

a point cloud which is based on a pair of stereo images.
The color images are loaded and converted to gray level
images. After a disparity calculation, which is based on
block matching, the point cloud is calculated and addi-
tionally the color information of the original left image is
added to build a 6-dimensional data vector for each 3D
point.

The execution order of an ImageNet is determined
automatically by Algorithm 1. For the ImageNet, shown
in Fig. 3 the execution order is displayed in Table 2.

206



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

ImageNets – Framework for Fast Development ... ���

Table 2 Active and to be processed block sets before and while execution
of the ImageNet of Fig. 3.

Step BP BA B′
A

0 {} {} {}
1 {1, 2, 3, 4, 5} {1} {}
2 {2, 3, 4, 5} {2, 3} {1}
3 {4, 5} {4} {2, 3}
4 {5} {5} {4}
5 {} {} {5}

Algorithm 1 (Process entire ImageNet).
BP := B
while (BP �= {})

BA := PreconditionsFullfilled(BP),
B′

A :=DoneProcessing(BA)
BA := BA\B′

A
BP := BP\B′

A
end while

In this example, the blocks are executed from left to right.
At start, only the leftmost block, which has no pre req-
uisite, can be executed. In the next step, the blocks 2 and
3 can be processed in parallel. When parallel execution
is enabled, the framework executes all parallel blocks in
multiple threads parallel. The remaining blocks are ex-
ecuted serially from left to right. During the execution,
all blocks to be processed are in the set BP and all active
blocks in the set BA. Processed blocks are removed from
BP. During execution, data flows between the ports of the
blocks, depending on the connection functions in δ∗.

One or more blocks are grouped in a plug-in using the
Qt library5 and an arbitrary number of plug-ins can be
loaded at run-time by ImageNets. In this way, ImageNets
can be easily extended by completely independent units
of code. Thus, the compilation errors in one plug-in do
not affect other plug-ins. Every plug-in is completely free
in its scope of application so that dependencies can be
kept to a minimum. More details to plug-ins follow in
Sect. 3.7.

Figure 4 shows the class structure of the ImageNet
framework. All blocks inherit from the class CBlock,

Figure 4 Class diagram of the ImageNets structure.

5 http://qt.digia.com/

which implements core functionalities and defines the in-
terface functions, like the process function. The required
lines of code for most derived blocks is very limited,
provides short compile times and therefore is easily man-
ageable in code inspection. All these features help to
achieve the first advantage “To be used with basic Image
processing knowledge” of fast algorithm development.

Basis of the ImageNet framework is the core library of
ImageNets, which is called LogicNet (see Fig. 4, center). It
holds the main functionality to load the plug-ins with the
blocks, which result in B∗. An ImageNet is represented
by the class CImageNet which owns its blocks B and can
process the net as described.

The special CImageNetExecutor block in LogicNet
runs a specified ImageNet, which enables building of hi-
erarchies (see Sect. 3.3). Furthermore, this block can be
used to load and execute an ImageNet with its blocks
from either the ImageNet Designer (see Sect. 3.1) or
using any other external application. This potential al-
lows the nets and blocks to be used as black boxes and
improves the reusability. Since the graphical part and the
logical part of ImageNets are completely decoupled, the
ImageNet Designer does not have to be loaded for execu-
tion of an ImageNet, which saves a significant amount
of memory and supports Adv. 2 “Easy debugging of
algorithms”.

Additionally, this approach combines the design of the
algorithm and its actual implementation. The algorithm
parameters in the executed ImageNet can be configured
in real-time using the Designer.

3.3 Hierarchical Modeling
Hierarchical modeling is a common method to subdi-
vide algorithms into separate parts. This breaks down the
complexity and facilitates reusability (Adv. 1).

A small example of hierarchical modeling is depicted
in Fig. 5. Color2Color3D is an executor block which per-
forms the sub-net shown beneath.

Every ImageNet can easily be adapted to be used as
a sub-net by adding executor input and output blocks to
the net in the Designer. The executor input and output
blocks in the sub-net are then mapped to ports of the

207

http://qt.digia.com/


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Tools

Figure 5 Hierarchy example.

executor block in the outer net. To support advantage 2,
any block before an executor input block and after an
executor output block is ignored. The orange block in
Fig. 5 on the left is ignored when an image net is used as
a sub-net.

The sub-nets can either be used as a black box or their
parameters can be overwritten in an executor block. Since
executor blocks can be integrated in sub-nets, hierarchical
modeling is possible with any depth of layers.

3.4 Feedback Structures
In [11] the machine vision framework ROVIS repre-
senting Robust Vision Framework for Service Robotics
is presented. The robustness of ROVIS against external
influences is achieved through integrated feedback struc-
tures at different levels of the vision system. Feedback
structures are useful to achieve robust object detection
under various lighting conditions and are superior to
conventional open loop vision algorithms [14].

For this reason, feedback is one of the core aspects of
ImageNets to have automatic parameter adaptation. The
general feedback mechanism can be applied to any block
from the Designer and is therefore very flexible to use.

Table 3 shows the analogies which hold when compar-
ing control theory with feedback structures in ImageNets.
To implement feedback, an evaluator has to be intro-
duced, which measures the quality of the outcome of the
algorithm. Based on this, parameters of the algorithm can
be adjusted until an optimal result is achieved.

Figure 6 illustrates an algorithm which uses feedback
to optimize a threshold operation based on entropy. In
the first part of execution all blocks from left to right
are executed. Normally, only the first two blocks could
be executed and afterwards the net would stop since the
next two blocks would wait for each other’s result. Only

Table 3 Analogies of control theory terms and their ImageNets equiv-
alents.

Control Theory ImageNets

System Algorithm
Sensor Evaluator, quality criterion
Controller Rules to change parameters
Actuator Parameter of a Block

because feedback ports are ignored in the beginning of
net execution, all blocks will be executed once. During
this first execution, the input of the feedback port is
empty since the linked block was not processed yet. As
already mentioned above, this feedback was applied to
the threshold segmentation block in the designer and no
programming is necessary. It varies the threshold of the
segmentation. A defined start value is used for the first
execution which leads to a bump free initialization of
the control loop. After the first complete execution, the
block with the feedback port and its following blocks are
executed until the desired output is obtained or another
abort criterion holds. An abort criterion can be whether
a certain feedback port value leaves its range limits. In
this example the condition is to minimize the entropy but
ignore a value of zero in the complete threshold range (0
to 255 with step size 1). To visualize the entropy values,
they are collected after every completion of the loop and
for visual inspection the entropy graph is plotted by the
last block in the net.

Since all blocks after a block with feedback are exe-
cuted again when the feedback block was processed, it is
necessary to place feedback loops that have to finish be-
fore the following part of the algorithm is executed inside
a sub-net. The loop finishes then during the execution of

208



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

ImageNets – Framework for Fast Development ... ���

Figure 6 Feedback optimization example.

the sub-net and only the final results are passed on to the
outer net. This enables cascaded feedback structures.

The extended algorithm which executes a net with
feedback is:

Algorithm 2 (Process entire ImageNet with feedback).
BP := B
while(BP �= {})

BF := FeedbackBlocks(BP)
while(BP �= {})
BA := PreconditionsFullfilled(BP)
B′

A :=DoneProcessing(BA)
BA := BA\B′

A
BP := BP\B′

A
end while
B′

F := {∀bj ∈ BF|FeedbackConditionTrue(bj)}
BP := BP ∪B′

F
BP := BP ∪{∀bj ∈ B′

F|ExtendedPostBlocks(bj)}
end while

Algorithm 2 extends Algorithm 1 by feedback execution
rules. The algorithm processes the whole net normally
in the first run. Afterwards, feedback blocks are checked
for reprocessing depending on their feedback rules. The
part of the net starting from the feedback block will then
be reprocessed in a loop, until an abort criterion like
“maximum number of executions” or “value is in goal
range” is met. Feedback rules to set the parameters of
a block can be defined to find an optimal value. This can
be achieved either by changing the parameter based on
the evaluator or, if that is not possible, by a numerical
optimization procedure.

The user has to configure the linkage of the blocks
and the condition for the loop correctly to prevent unre-
alistic, false starting conditions or infinite loops. Simple

range based tests can help to easily visualize the effect of
a parameter to the result of an algorithm. Each iteration
loop’s result can be displayed at the end of the execu-
tion, depending on the user requirement. Based on this
overview, optimization rules can be generated.

Feedback structures can also be used to simplify the
processing of complete videos. A video is loaded frame by
frame. Single frames are processed with the same method
that may contain additional feedback structures and after-
wards fused to a result video. The outer feedback ensures
processing of all frames in subsequent execution loops.
With the internal feedback of the processing method the
optimal result for each frame is ensured.

3.5 Integrated Multithreading
The high performance of ImageNets is improved by the
integrated multithreading capability (Adv. 2). Each block
in ImageNets is executed by the framework in a separate
thread. On the one hand, this keeps the ImageNet De-

Figure 7 Multithreading performance of ImageNets.

209



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Tools

signer always responding to user inputs and on the other
hand this also offers the possibility of speeded up execu-
tion by the configuration of a net. Thus, the developer
does not have to deal with the details of multithreading
but can make use of its improved performance.

Figure 7 displays time measurements of the integrated
multithreading capability of ImageNets. Two computer
systems have been compared: one with two and one
with eight cores. With deactivated multithreading, both
computers performed almost equally. After activating
multithreading, the 8-core system has speeded up the
calculations by more than 4 times and the 2-core system
has been speeded up by almost 2 times. The values have
been calculated for an intrinsic camera calibration process
where 10 images have been loaded and processed by a set
of same blocks.

3.6 Hardware Access
Hardware access to the system with its cameras, pan-tilt-
head and robot is very important for robot development
environments. For other applications different hardware
components may be used. In ImageNets, hardware access
to a component is encapsulated in its own block (e. g.
acquire an image from a specific camera or move the
robot to a defined joint configuration). In the FRIEND
reference system, a method based on CORBA communi-
cation is used. This enables the execution of an ImageNet
at a separate computer that is not directly attached to
the specific hardware component. ImageNets can also be
easily integrated into other robot software like ROS [12].
Existing systems can easily be made available to Ima-
geNets by placing the corresponding hardware access into
a function block. Afterwards, every ImageNets-user can
use this hardware.

3.7 Development of Function Blocks and Plug-ins
All algorithms are built with function blocks that are
connected to each other to form nets. These blocks must
be provided to the modeler of an algorithm by program-
mers. They and only they must know the required details
to implement new blocks. All other users of ImageNets
may use the function of available blocks and don’t need
to know the internal structures (see also Fig. 1).

Figure 4 shows the involved classes to implement a new
block and a new plug-in. A new block is derived from
CBlock. It holds the core functionality and the interfaces
that have to be used by the block programmer. The pro-
cess method of the interface must be implemented by
the block programmer. All functionality has to be placed
there. If the block has parameters, also the edit method
has to be implemented to enable editing of the parame-
ters.

A set of function blocks is made available to the frame-
work by placing them into a plug-in. The new plug-in is
derived from CPluginInterface. It knows all new blocks
and can produce a copy of them.

4 Performance Evaluation
In this chapter, the ImageNets framework is compared
with other development tools to evaluate whether the
advantages of chapter 1 are achieved. On the one hand
ImageNets has to support fast development while on the
other hand the resulting algorithms, developed with Im-
ageNets, must have high performance.

OpenCV [3] and MATLAB/Simulink [6] have been
chosen as comparisons to ImageNets, as they are both
very well known to the image processing community and
each of them fulfills at least one of the four advantages.
Both development tools stand for a group of similar tools.
MATLAB/Simulink supports fast development but lacks
high performance and OpenCV, on the other side, has
high performance but is relatively complex to program.
The combination of MATLAB and OpenCV also has to
be considered, because it fulfills the first two advantages
while adding the disadvantage of having to convert MAT-
LAB code to C++ which also requires some programming
knowledge.

The results in Table 4 were achieved using Intel Core
2 Duo computer system with 1.86 GHz and 2 GB RAM.
It shows that the high performance of OpenCV and the
short development time of MATLAB are both achieved
by ImageNets – at least for the very simple image
processing example. By using MATLAB with Simulink,
the lines of code can also be brought to zero so that
a non-programmer can achieve the goal but still the
disadvantageous low performance remains. If the combi-
nation of MATLAB and OpenCV is used, the efforts sum
up. The relatively high development time of OpenCV can
be traced back to many compile and test cycles and the
syntax and the arguments of used functions had to be
referred from the documentation.

Due to the fact that ImageNets uses OpenCV at its
core, the comparable execution performance was an-
ticipated. With an increasing number of blocks in an
ImageNet, it is expected that the overhead in ImageNets
slows down the execution with respect to pure OpenCV.
The overhead consists of e. g. checking preconditions of
input images and calculating the next executable blocks.
In the Sect. 3.5 about multithreading it is shown, that
ImageNets can even improve the performance with re-

Table 4 Performance comparison of image processing tools. The task is
to load a color image, convert it to gray scale and perform a thresholding
operation on it.

execution development lines
time [s] time [min] of code

MATLAB 0.10 1 3
MATLAB / SIMULINK 0.10 1 0
OpenCV 0.06 20 30
MATLAB + OpenCV 0.06 21 33
ImageNets 0.06 1 0

210



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

ImageNets – Framework for Fast Development ... ���

spect to OpenCV by making use of widespread multi-core
processors without further work for the developer.

4.1 Comparison of ImageNets and Simulink
under Realistic Conditions

The lecture Real Time Software Design 2 at University
of Bremen focuses in the summer term 2012 on the im-
plementation of real time image processing algorithms.6

In the attached exercise the lecture’s theory is intensified
with practical tasks to be solved by the participants. The
tools used in the exercises are MATLAB/Simulink and
ImageNets. OpenCV was also considered as a third tool
to be used but as Table 4 shows OpenCV would not be
faster in development of image processing algorithms.
Also it is not function block based and is therefore hard
to compare directly.

After the exercises the students were asked to compare
the two tools and give their preferences regarding finding
of the blocks for the algorithm, building a net with them
to model the algorithm, running the net and debugging
the net. To avoid a biased statistic the students have been
split into groups of two (one group with three students)
with comparable pre-knowledge about the used tools and
assigned half of the groups to start with Simulink and
the other half with ImageNets. In the second exercise
the tasks were the same but the tool was switched. This
way the differences coming from pre-knowledge about
the tasks and regarding comparing different tasks for the
tools were evened out.

Altogether 49 students participated in the exercises.
Their preferences are displayed in Fig. 8. The x-axis shows
the preference where a value of 0 means that ImageNets is
completely preferred and 6 represents a strong preference
on Simulink. On the y-axis the amount of students who
voted for a specific answer can be seen. A clear preference
for ImageNets is visible. Especially finding the required
blocks is much easier but also for the other subtasks
a preference to Image Nets can be seen. For these prefer-
ences it made no difference with which tool the students
had started.

Figure 8 Preference of tool of the students for image processing. Values
close to 0 represent a preference for ImageNets and close to 6 for Simulink.

6 The theory part was read by Prof. Vasile Gui, Temeswar, who was
visiting professor in the scheme “Internationalization at home” funded
by University of Bremen.

Table 5 Success rate of the exercises.

Tool Ex. 1 Ex. 2 Mean

ImageNets 70.83% 92.00% 81.42%
Simulink 0.00% 54.17% 27.08%

While the starting tool made no difference in the final
preferences, it influenced the difficulty of finishing the
tasks. Table 5 shows the success rate of the students to
finish the exercises with the different tools. Generally, the
second exercise had a higher success rate for each tool
since the students could use their pre-knowledge for the
tasks from the first exercise. Looking at the change from
one tool to the other it can be seen that a change from
Simulink to ImageNets results in a big increase of the
success rate. The students that switched from ImageNets
to Simulink had a significant drop in their success rate.
This and the mean over both exercises show clearly the
ability of ImageNets to enable an easy access to image
processing functionality for inexperienced users to model
their own algorithms.

4.2 Development Example
Figure 9 shows a photograph and its mapped virtual re-
ality of a grasping scene where a robot must grasp a book
from a shelf. As the color mono camera, which is attached
to the gripper, can only perceive 2D images it is difficult
to estimate the 3D position of the book, which is essential
for the robot to perform grasping.

The idea is to simulate a stereo camera by acquiring
images at two viewpoints separated by their adjustable
baseline. Subsequently, depth can be calculated based on
disparity calculation [13]. With ImageNets, the time from
idea to first working version took only 15 minutes, by
using a combination of existing blocks and sub-nets. Not
a single line of code had to be written.

Figure 9 Depth perception of a mono camera by robot movement.

5 Conclusion
With the presented open source framework called Im-
ageNets, the design process of robust robot vision
algorithms is speeded up significantly by reusable func-
tion blocks and easy to use hardware integration. The

211



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Tools

developed 3D environment combines robot vision results
with a model of the robot. High run-time performance is
achieved by using C++, OpenCV and integrated multi-
threading. So far about 20 developers have implemented
over 300 blocks for ImageNets, which are directly acces-
sible for any user of the framework. These blocks could
be used easily for robust image processing applications
in other projects of the robotics community. With the
help of the ImageNet Designer, all functions in the plug-
ins are directly accessible and grouped by functionality,
name and input/output ports.

References

[1] Gräser, A., Kuzmicheva, O., Ristic-Durrant, D., Natarajan, S. K.,
and Fragkopoulos, C.: Vision-based Control of Assistive Robot
FRIEND: Practical Experiences and Design Conclusions, Automa-
tisierungstechnik, 60(5):297–308, 2012.

[2] Prenzel, O., Lange, U., Kampe, H., Martens, C., and Gräser, A.:
Programming of Intelligent Service Robots with the Process Model
“FRIEND::Process” and Configurable Task-Knowledge; Robotic
Systems – Applications, 2012, AshishDutta (Ed.) ISBN 978–953-
307-941-7, InTech, 2012.

[3] Bradsky, G. and Kaehler, A.: Learning OpenCV Computer Vision
with the OpenCV Library, O’Reilly, ISBN 978-0-596-51613-0,
2008.

[4] Telelogic: Rhapsody Open Workshop – Hand-out Documenta-
tion, http://www.telelogic.com, 2007.

[5] Pilz: PNOZ multi Configurator, http://www.pilz.de/products/
control_communication/safety_relay/f/pnozmulti/s/00258.

[6] The Mathworks: MATLAB & Simulink Video and Image Process-
ing Blockset, http://www.mathworks.de/products/viprocessing.

[7] National Instruments: LabView with image processing plug-in,
http://www.ni.com/analysis/lvaddon_vision.htm.

[8] Heckel, F., Schwier, M., and Peitgen, H.-O.: Object Oriented Ap-
plication Development with MeVisLab and Python, in Lecture
Notes in Informatics (Informatik 2009: Im Focus das Leben),
154:1338–1351, 2009.

[9] Microsoft: GraphEdit, http://msdn.microsoft.com/de-de/library/
ms787460.aspx.

[10] MVTec: Halcon, http://www.mvtec.com/halcon/.
[11] Grigorescu, S. M.: Robust Machine Vision for Service Robotics,

PhD Thesis, Institute of Automation, University of Bremen,
Shaker-Verlag, Aachen, 2010.

[12] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., and Ng, A. Y.: ROS: an open-source Robot Operating
System, in: Proc. Of ICRA Workshop on Open Source Software,
2009.

[13] Scharstein, D. and Szeliski, R.: A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms, International
Journal of Computer Vision, 47(1/2/3):7–42, April–June 2002,
2002.

[14] Ristic-Durrant, D. and Gräser, A.: Performance Measure as Feed-
back Variable in Image Processing, EURASIP J. Adv. Sig. Proc.
(EJASP) 2006.

Received: October 5, 2012

Uwe Lange received the B.Sc. and M.Sc. degrees
in Systems Engineering from the University of
Bremen, Germany, in 2007 and 2008 respectively.
He is currently a Ph.D. student at the Institute of
Automation, University of Bremen. His research
interest is digital image processing for service
robotic applications.

Address: Institute of Automation, University of
Bremen, Otto-Hahn-Allee, NW1, 28359 Bremen,
e-mail: ulange@iat.uni-bremen.de

Henning Kampe received the diploma degree
in Electrical Engineering and Information Tech-
nology from University of Bremen, Germany, in
2009. Since 2009 he is working as a Ph.D. student
at the IAT, University of Bremen, in the field of
software-architecture design. His main areas of
interest are software development and system de-
sign.

Address: Institute of Automation, University of
Bremen, Otto-Hahn-Allee, NW1, 28359 Bremen,
e-mail: kampe@iat.uni-bremen.de

Prof. Dr.-Ing. Axel Gräser received the diploma
in electrical engineering from the University of
Karlsruhe, Germany, in 1976 and the Ph.D. de-
gree in control theory from the TH Darmstadt,
Germany, in 1982. Since 1994, he has been the
Director of the Institute of Automation, Uni-
versity of Bremen, and the Head of the Depart-
ment of Robotics and Process Automation. His
research interests include service robotics, brain
robot interface, digital image processing and aug-
mented reality.

Address: Institute of Automation, University of
Bremen, Otto-Hahn-Allee, NW1, 28359 Bremen,
e-mail: ag@iat.uni-bremen.de

212

http://www.telelogic.com
http://www.pilz.de/products/control_communication/safety_relay/f/pnozmulti/s/00258
http://www.pilz.de/products/control_communication/safety_relay/f/pnozmulti/s/00258
http://www.mathworks.de/products/viprocessing
http://www.ni.com/analysis/lvaddon_vision.htm
http://msdn.microsoft.com/de-de/library/ms787460.aspx
http://msdn.microsoft.com/de-de/library/ms787460.aspx
http://www.mvtec.com/halcon/
mailto:ulange@iat.uni-bremen.de
mailto:kampe@iat.uni-bremen.de
mailto:ag@iat.uni-bremen.de

	1 Introduction 
	2 State of the Art 
	3 ImageNets 
	3.1 ImageNet Designer 
	3.2 ImageNets Logic 
	3.3 Hierarchical Modeling 
	3.4 Feedback Structures 
	3.5 Integrated Multithreading 
	3.6 Hardware Access 
	3.7 Development of Function Blocks and Plug-ins 

	4 Performance Evaluation 
	4.1 Comparison of ImageNets and Simulink under Realistic Conditions 
	4.2 Development Example 

	5 Conclusion 
	References

